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Background

@ authors:
‘Software Engineering with Formal Methods' group at Chalmers

@ co-developed KeY tool for deductive JAVA source code verification

@ we run Master level course:
‘Software Engineering using Formal Methods'
using Spin and KeY

@ we run 3rd year Bachelor level course:
‘Testing, Debugging, and Verification’

this talk: conception of the latter
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Computing Education at Chalmers

Chalmers University of Technology

Strong engineering tradition, most Swedish engineers from Chalmers
Emphasis on traditional math courses: calculus, algebra, statistics
Computing courses focus on programming

on Bachelor level:
No dedicated courses on theoretical computer science topics
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Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity

We present spectrum of quality ensuring activities:

error detection, error elimination, ensuring error freedom
Applicability

All methods in action with executable programs

Formalisation = Tool Support
Formalisation prerequisite for far-reaching analysis tools

Tools are essential
Without tools potential of formalisation not fully realised
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The TDV Course Structure

‘ Specification '
Informal
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Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract
Raise awareness:

e if you write specs or not, you always program towards contracts
e Example from JAVA programming:
o All classes inherit contract from Object
e Object contract requires:
hashcode () consistent with equals()
o Programmers/students typically break that contract
o Consequence: collection classes malfunction

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009



The TDV Course Structure

‘ Specification '
Informal

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 7 /19



The TDV Course Structure

Debugging

classic

~—
‘ Specification '
Informal

classic
testing

Testing

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 7 /19



Classic Testing Theory
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Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

@ White-/Blackbox testing
o Coverage criteria:

e control flow graph coverage
e logic coverage

e input space partitioning

@ Writing hand-crafted test cases

Tool: JUnit
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Debugging

Disregarded by most software engineering lectures, in contrast to
development time actually spent on debugging.

A. Zeller Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, Oct. 2005.
Classic Debugging Techniques

o Logging of events
e Controlled execution: Step into/over, breakpoints

@ Inspection: variable values, heap inspection

Tools: logdj, eclipse debugger

Delta Debugging
@ Automatic retrieval of minimal input triggering the bug

Tool: DDinput
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Formal Specification

Students learn
@ Formalisation of real-world problems,
@ Basics of first-order logic and

e Java Modelling Language (JML) as specification language

Tools: jml (syntax and type checker, CoMMON JML TOOLS)

Formal specification prerequisite for automation of

@ Test generation
@ Symbolic debugging

@ Formal verification
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Automatic Test Generation

Blackbox Testing: Model-based testing
Based on formal specification
o Coverage criteria incl. specifications
@ Derivation of test scenarios/cases by disjunction analysis

@ Deriving test cases from JML specifications

Tool: jmlunit (CommON JML ToOOLS)
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Automatic Test Generation

Blackbox Testing: Model-based testing

Based on formal specification
o Coverage criteria incl. specifications
@ Derivation of test scenarios/cases by disjunction analysis

@ Deriving test cases from JML specifications

Tool: jmlunit (CommON JML ToOOLS)

White-box testing
Test cases derived from
@ Formal specification and

@ Source code

Introducing symbolic execution as basic technology.
Tool: KeY-VBT
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Symbolic Debugging

[ List.java 2 =8
public static void remove(List start, List
List current = start;
while (current != null) {

if (current.next == toRemove) { |
current.next = toRemove.next;
break; <

} i

@ Execution Tree View %\ Symbolic Execution Debugger

Clear View | Clear Watchpoints | Recompute Watch

Based on symbolic execution

@ Covers all possible execution
paths

@ No initialisation necessary

o Efficient omniscient debugging
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Symbolic Debugging

Before removal:

¥ Symbolic State View &3, @ Execution Tree View|

Instance Configuation

= <

Array Index Configuration

list_0:List }_@_.l list_LiList m
bexq

<Class>:List

Upcoming Method Invocation:
remove( List start List toRemove )
Input Values:

start = list_0

toRemove := list_1

@ prestate

O poststate

v Constraints

After removal:

9] Y

bolic State Vi &2, ¥ Execution Tree V| Symbolic Executi| = &'
list_LiList

Instance Configuation

= <

list_2:List H
o ?

Array Index Configuration

list_O:List

<Class>:List O prestate

Current Method: © Poststare

remove List stare List toRemove ) x

Input Values: Constraints

starti- list.0 "

toRemove : list_L - .
<>
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Symbolic Debugging

Intended configuration:

7% Based on symbolic execution
@ Covers all possible execution
paths

Unintended configuration:

o Efficient omniscient debugging
| lsoust | @ Symbolic heap inspection

o Specification constrains valid
heap configuration

@ No initialisation necessary
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Verification

Most formal approach taught in TDV.
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Most formal approach taught in TDV.

Calculus and tool developed specifically for that course.

Hoare calculus with explicit substitutions

Hoare calculus variant based on symbolic execution
o forward reasoning
@ elimination of most non-deterministic rules
o first-order reasoning as black-box
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Verification

Most formal approach taught in TDV.
Calculus and tool developed specifically for that course.

Hoare calculus with explicit substitutions

Hoare calculus variant based on symbolic execution
o forward reasoning
@ elimination of most non-deterministic rules
o first-order reasoning as black-box

Tool: KeY-Hoare

@ Interactive and automatic verification
system (based on KeY)

e Powerful first-order/arithmetic proving
capabilities

@ Supports partial, total, and
execution time aware correctness
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Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students
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Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Evaluation
Course has been rated high by participating students.
90% of students completed course (high rate for non-compulsory course)

Limitations

@ Compromise between available time, topic and depth
e Missing:
e Software certification and code reviews
o Integration into software development process (planned!)

Course adapted by U. of Innsbruck, TU of Madrid and U. of Freiburg
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Research-Driven Course Development

Can a Bachelor level course be research driven?

@ our research objective is precisely increased accessibility of FMs
@ students profit from this objective

@ we profit from increased pressure on usability
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in spite of the close connection to our own research:
course can be run in any other context

@ All tools freely available, mostly open source

@ We actively support adaptation of course (units)

o Course parts adapted at:
e Technical University of Madrid
e University of Innsbruck
o University of Freiburg
@ Feedback from adaptions improved our course
(e.g. worst-case execution time in KeY-Hoare
suggested by Joanna Chimiak-Opoka, Innsbruck)
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Overview: Tool-Based Teaching

Teaching Unit Content Formal Tools
Testing Systematic testing, specification, no JUNIT
assertions, black/white box,
path/code coverage
Debugging Bug tracking, execution control, no DDinput,
failure input minimisation, ECLIPSE,
logging, slicing log4j
Formal Design-by-contract, yes jml
Specification formalisation, (type
first-order logic, JML checker)
Automated Model-based TC generation, yes jmlunit,
Test Case Symbolic execution, KEY VSD,
Generation Code-based TC generation KeY VBT
Formal Hoare triple, weakest precondi- yes KeY-Hoare
Verification tion, formal verification, loop in-

variant

All tools freely available software and most open source.
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