
Integrated and Tool-Supported Teaching of
Testing, Debugging, and Verification

Wolfgang Ahrendt, Richard Bubel, Reiner Hähnle

Chalmers University
Department of Computer Science and Engineering

Gothenburg
Sweden

November 16, 2009

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 1 / 19



Background

authors:
‘Software Engineering with Formal Methods’ group at Chalmers

co-developed KeY tool for deductive Java source code verification

we run Master level course:
‘Software Engineering using Formal Methods’
using Spin and KeY

we run 3rd year Bachelor level course:
‘Testing, Debugging, and Verification’

this talk: conception of the latter

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 2 / 19



Background

authors:
‘Software Engineering with Formal Methods’ group at Chalmers

co-developed KeY tool for deductive Java source code verification

we run Master level course:
‘Software Engineering using Formal Methods’
using Spin and KeY

we run 3rd year Bachelor level course:
‘Testing, Debugging, and Verification’

this talk: conception of the latter

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 2 / 19



Background

authors:
‘Software Engineering with Formal Methods’ group at Chalmers

co-developed KeY tool for deductive Java source code verification

we run Master level course:
‘Software Engineering using Formal Methods’
using Spin and KeY

we run 3rd year Bachelor level course:
‘Testing, Debugging, and Verification’

this talk: conception of the latter

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 2 / 19



Background

authors:
‘Software Engineering with Formal Methods’ group at Chalmers

co-developed KeY tool for deductive Java source code verification

we run Master level course:
‘Software Engineering using Formal Methods’
using Spin and KeY

we run 3rd year Bachelor level course:
‘Testing, Debugging, and Verification’

this talk: conception of the latter

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 2 / 19



Background

authors:
‘Software Engineering with Formal Methods’ group at Chalmers

co-developed KeY tool for deductive Java source code verification

we run Master level course:
‘Software Engineering using Formal Methods’
using Spin and KeY

we run 3rd year Bachelor level course:
‘Testing, Debugging, and Verification’

this talk: conception of the latter

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 2 / 19



Computing Education at Chalmers

Chalmers University of Technology

Strong engineering tradition, most Swedish engineers from Chalmers

Emphasis on traditional math courses: calculus, algebra, statistics

Computing courses focus on programming

on Bachelor level:
No dedicated courses on theoretical computer science topics

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 3 / 19



Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity
We present spectrum of quality ensuring activities:
error detection, error elimination, ensuring error freedom

Applicability
All methods in action with executable programs

Formalisation ⇒ Tool Support
Formalisation prerequisite for far-reaching analysis tools

Tools are essential
Without tools potential of formalisation not fully realised

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 4 / 19



Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity
We present spectrum of quality ensuring activities:
error detection, error elimination, ensuring error freedom

Applicability
All methods in action with executable programs

Formalisation ⇒ Tool Support
Formalisation prerequisite for far-reaching analysis tools

Tools are essential
Without tools potential of formalisation not fully realised

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 4 / 19



Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity
We present spectrum of quality ensuring activities:
error detection, error elimination, ensuring error freedom

Applicability
All methods in action with executable programs

Formalisation ⇒ Tool Support
Formalisation prerequisite for far-reaching analysis tools

Tools are essential
Without tools potential of formalisation not fully realised

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 4 / 19



Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity
We present spectrum of quality ensuring activities:
error detection, error elimination, ensuring error freedom

Applicability
All methods in action with executable programs

Formalisation ⇒ Tool Support
Formalisation prerequisite for far-reaching analysis tools

Tools are essential
Without tools potential of formalisation not fully realised

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 4 / 19



Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity
We present spectrum of quality ensuring activities:
error detection, error elimination, ensuring error freedom

Applicability
All methods in action with executable programs

Formalisation ⇒ Tool Support
Formalisation prerequisite for far-reaching analysis tools

Tools are essential
Without tools potential of formalisation not fully realised

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 4 / 19



The TDV Course Structure

Debugging

classic

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification
Informal

Inform
al Fo

rm
al

+

F
orm

al
V

erifi
cation

Symbolic

Execution

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 5 / 19



Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:

if you write specs or not, you always program towards contracts

Example from Java programming:

All classes inherit contract from Object
Object contract requires:
hashcode() consistent with equals()
Programmers/students typically break that contract
Consequence: collection classes malfunction

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 / 19



Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:

if you write specs or not, you always program towards contracts

Example from Java programming:

All classes inherit contract from Object
Object contract requires:
hashcode() consistent with equals()
Programmers/students typically break that contract
Consequence: collection classes malfunction

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 / 19



Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:

if you write specs or not, you always program towards contracts

Example from Java programming:

All classes inherit contract from Object
Object contract requires:
hashcode() consistent with equals()
Programmers/students typically break that contract
Consequence: collection classes malfunction

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 / 19



Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:

if you write specs or not, you always program towards contracts

Example from Java programming:

All classes inherit contract from Object
Object contract requires:
hashcode() consistent with equals()
Programmers/students typically break that contract
Consequence: collection classes malfunction

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 / 19



Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:

if you write specs or not, you always program towards contracts

Example from Java programming:

All classes inherit contract from Object
Object contract requires:
hashcode() consistent with equals()
Programmers/students typically break that contract
Consequence: collection classes malfunction

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 / 19



Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:

if you write specs or not, you always program towards contracts

Example from Java programming:

All classes inherit contract from Object

Object contract requires:
hashcode() consistent with equals()
Programmers/students typically break that contract
Consequence: collection classes malfunction

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 / 19



Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:

if you write specs or not, you always program towards contracts

Example from Java programming:

All classes inherit contract from Object
Object contract requires:
hashcode() consistent with equals()

Programmers/students typically break that contract
Consequence: collection classes malfunction

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 / 19



Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:

if you write specs or not, you always program towards contracts

Example from Java programming:

All classes inherit contract from Object
Object contract requires:
hashcode() consistent with equals()
Programmers/students typically break that contract

Consequence: collection classes malfunction

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 / 19



Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:

if you write specs or not, you always program towards contracts

Example from Java programming:

All classes inherit contract from Object
Object contract requires:
hashcode() consistent with equals()
Programmers/students typically break that contract
Consequence: collection classes malfunction

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 / 19



The TDV Course Structure

Debugging

classic

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification
Informal

Inform
al Fo

rm
al

+

F
orm

al
V

erifi
cation

Symbolic

Execution

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 7 / 19



The TDV Course Structure

Debugging

classic

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification
Informal

Inform
al Fo

rm
al

+

F
orm

al
V

erifi
cation

Symbolic

Execution

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 7 / 19



Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

White-/Blackbox testing

Coverage criteria:

control flow graph coverage
logic coverage
input space partitioning

Writing hand-crafted test cases

Tool: JUnit

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 / 19



Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

White-/Blackbox testing

Coverage criteria:

control flow graph coverage
logic coverage
input space partitioning

Writing hand-crafted test cases

Tool: JUnit

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 / 19



Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

White-/Blackbox testing

Coverage criteria:

control flow graph coverage
logic coverage
input space partitioning

Writing hand-crafted test cases

Tool: JUnit

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 / 19



Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

White-/Blackbox testing

Coverage criteria:

control flow graph coverage

logic coverage
input space partitioning

Writing hand-crafted test cases

Tool: JUnit

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 / 19



Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

White-/Blackbox testing

Coverage criteria:

control flow graph coverage
logic coverage

input space partitioning

Writing hand-crafted test cases

Tool: JUnit

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 / 19



Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

White-/Blackbox testing

Coverage criteria:

control flow graph coverage
logic coverage
input space partitioning

Writing hand-crafted test cases

Tool: JUnit

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 / 19



Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

White-/Blackbox testing

Coverage criteria:

control flow graph coverage
logic coverage
input space partitioning

Writing hand-crafted test cases

Tool: JUnit

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 / 19



Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

White-/Blackbox testing

Coverage criteria:

control flow graph coverage
logic coverage
input space partitioning

Writing hand-crafted test cases

Tool: JUnit

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 / 19



Debugging

Disregarded by most software engineering lectures, in contrast to
development time actually spent on debugging.

A. Zeller Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, Oct. 2005.

Classic Debugging Techniques

Logging of events

Controlled execution: Step into/over, breakpoints

Inspection: variable values, heap inspection

Tools: log4j, eclipse debugger

Delta Debugging

Automatic retrieval of minimal input triggering the bug

Tool: DDinput

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 9 / 19



The TDV Course Structure

Debugging

classic

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification
Informal

Inform
al Fo

rm
al

+

F
orm

al
V

erifi
cation

Symbolic

Execution

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 10 / 19



The TDV Course Structure

Debugging

classic

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification

Inform
al Fo

rm
al

+

F
orm

al
V

erifi
cation

Symbolic

Execution

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 10 / 19



Formal Specification

Students learn

Formalisation of real-world problems,

Basics of first-order logic and

Java Modelling Language (JML) as specification language

Tools: jml (syntax and type checker, Common JML Tools)

Formal specification prerequisite for automation of

Test generation

Symbolic debugging

Formal verification

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 11 / 19



The TDV Course Structure

Debugging

classic

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification

Inform
al Fo

rm
al

+

F
orm

al
V

erifi
cation

Symbolic

Execution

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 12 / 19



The TDV Course Structure

Debugging

classic

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification

Inform
al Fo

rm
al

+

F
orm

al
V

erifi
cation

Symbolic

Execution

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 12 / 19



The TDV Course Structure

Debugging

classic visual

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification

Inform
al Fo

rm
al

+

F
orm

al
V

erifi
cation

Symbolic

Execution

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 12 / 19



Automatic Test Generation

Blackbox Testing: Model-based testing

Based on formal specification

Coverage criteria incl. specifications

Derivation of test scenarios/cases by disjunction analysis

Deriving test cases from JML specifications

Tool: jmlunit (Common JML Tools)

White-box testing

Test cases derived from

Formal specification and

Source code

Introducing symbolic execution as basic technology.

Tool: KeY-VBT

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 13 / 19



Automatic Test Generation

Blackbox Testing: Model-based testing

Based on formal specification

Coverage criteria incl. specifications

Derivation of test scenarios/cases by disjunction analysis

Deriving test cases from JML specifications

Tool: jmlunit (Common JML Tools)

White-box testing

Test cases derived from

Formal specification and

Source code

Introducing symbolic execution as basic technology.

Tool: KeY-VBT

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 13 / 19



Symbolic Debugging

Based on symbolic execution

Covers all possible execution
paths

No initialisation necessary

Efficient omniscient debugging

Symbolic heap inspection

Specification constrains valid
heap configuration

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 14 / 19



Symbolic Debugging

Before removal:

After removal:

Based on symbolic execution

Covers all possible execution
paths

No initialisation necessary

Efficient omniscient debugging

Symbolic heap inspection

Specification constrains valid
heap configuration

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 14 / 19



Symbolic Debugging

Intended configuration:

Unintended configuration:

Based on symbolic execution

Covers all possible execution
paths

No initialisation necessary

Efficient omniscient debugging

Symbolic heap inspection

Specification constrains valid
heap configuration

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 14 / 19



Verification

Most formal approach taught in TDV.

Calculus and tool developed specifically for that course.

Hoare calculus with explicit substitutions

Hoare calculus variant based on symbolic execution

forward reasoning

elimination of most non-deterministic rules

first-order reasoning as black-box

Tool: KeY-Hoare

Interactive and automatic verification
system (based on KeY)

Powerful first-order/arithmetic proving
capabilities

Supports partial, total, and
execution time aware correctness

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 15 / 19



Verification

Most formal approach taught in TDV.

Calculus and tool developed specifically for that course.

Hoare calculus with explicit substitutions

Hoare calculus variant based on symbolic execution

forward reasoning

elimination of most non-deterministic rules

first-order reasoning as black-box

Tool: KeY-Hoare

Interactive and automatic verification
system (based on KeY)

Powerful first-order/arithmetic proving
capabilities

Supports partial, total, and
execution time aware correctness

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 15 / 19



Verification

Most formal approach taught in TDV.

Calculus and tool developed specifically for that course.

Hoare calculus with explicit substitutions

Hoare calculus variant based on symbolic execution

forward reasoning

elimination of most non-deterministic rules

first-order reasoning as black-box

Tool: KeY-Hoare

Interactive and automatic verification
system (based on KeY)

Powerful first-order/arithmetic proving
capabilities

Supports partial, total, and
execution time aware correctness

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 15 / 19



Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Evaluation
Course has been rated high by participating students.
90% of students completed course (high rate for non-compulsory course)

Limitations

Compromise between available time, topic and depth

Missing:

Software certification and code reviews
Integration into software development process (planned!)

Course adapted by U. of Innsbruck, TU of Madrid and U. of Freiburg

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 16 / 19



Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Evaluation
Course has been rated high by participating students.
90% of students completed course (high rate for non-compulsory course)

Limitations

Compromise between available time, topic and depth

Missing:

Software certification and code reviews
Integration into software development process (planned!)

Course adapted by U. of Innsbruck, TU of Madrid and U. of Freiburg

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 16 / 19



Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Evaluation
Course has been rated high by participating students.
90% of students completed course (high rate for non-compulsory course)

Limitations

Compromise between available time, topic and depth

Missing:

Software certification and code reviews
Integration into software development process (planned!)

Course adapted by U. of Innsbruck, TU of Madrid and U. of Freiburg

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 16 / 19



Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Evaluation
Course has been rated high by participating students.
90% of students completed course (high rate for non-compulsory course)

Limitations

Compromise between available time, topic and depth

Missing:

Software certification and code reviews
Integration into software development process (planned!)

Course adapted by U. of Innsbruck, TU of Madrid and U. of Freiburg

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 16 / 19



Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Evaluation
Course has been rated high by participating students.
90% of students completed course (high rate for non-compulsory course)

Limitations

Compromise between available time, topic and depth

Missing:

Software certification and code reviews
Integration into software development process (planned!)

Course adapted by U. of Innsbruck, TU of Madrid and U. of Freiburg

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 16 / 19



Research-Driven Course Development

Can a Bachelor level course be research driven?

our research objective is precisely increased accessibility of FMs

students profit from this objective

we profit from increased pressure on usability

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 / 19



Research-Driven Course Development

Can a Bachelor level course be research driven?

our research objective is precisely increased accessibility of FMs

students profit from this objective

we profit from increased pressure on usability

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 / 19



Research-Driven Course Development

Can a Bachelor level course be research driven?

our research objective is precisely increased accessibility of FMs

students profit from this objective

we profit from increased pressure on usability

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 / 19



Research-Driven Course Development

Can a Bachelor level course be research driven?

our research objective is precisely increased accessibility of FMs

students profit from this objective

we profit from increased pressure on usability

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 / 19



Research-Driven Course Development

Can a Bachelor level course be research driven?

our research objective is precisely increased accessibility of FMs

students profit from this objective

we profit from increased pressure on usability

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 / 19



Adaption

in spite of the close connection to our own research:
course can be run in any other context

All tools freely available, mostly open source

We actively support adaptation of course (units)

Course parts adapted at:

Technical University of Madrid
University of Innsbruck
University of Freiburg

Feedback from adaptions improved our course
(e.g. worst-case execution time in KeY-Hoare
suggested by Joanna Chimiak-Opoka, Innsbruck)

Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 18 / 19



Overview: Tool-Based Teaching

Teaching Unit Content Formal Tools
Testing Systematic testing, specification,

assertions, black/white box,
path/code coverage

no JUnit

Debugging Bug tracking, execution control,
failure input minimisation,
logging, slicing

no DDinput,
Eclipse,
log4j

Formal
Specification

Design-by-contract,
formalisation,
first-order logic, JML

yes jml
(type
checker)

Automated
Test Case
Generation

Model-based TC generation,
Symbolic execution,
Code-based TC generation

yes jmlunit,
KeY VSD,
KeY VBT

Formal
Verification

Hoare triple, weakest precondi-
tion, formal verification, loop in-
variant

yes KeY-Hoare

All tools freely available software and most open source.
Ahrendt, Bubel, Hähnle (CTH) Testing, Debugging, and Verification November 16, 2009 19 / 19


