Integrated and Tool-Supported Teaching of

Testing, Debugging, and Verification

Wolfgang Ahrendt, Richard Bubel, Reiner Hahnle

Chalmers University
Department of Computer Science and Engineering
Gothenburg
Sweden

November 16, 2009

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 1/19

@ authors:
‘Software Engineering with Formal Methods' group at Chalmers

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 2 /19

@ authors:
‘Software Engineering with Formal Methods' group at Chalmers

@ co-developed KeY tool for deductive JAVA source code verification

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 2 /19

Background

@ authors:
‘Software Engineering with Formal Methods' group at Chalmers

@ co-developed KeY tool for deductive JAVA source code verification

@ we run Master level course:
‘Software Engineering using Formal Methods'
using Spin and KeY

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 2 /19

Background

@ authors:
‘Software Engineering with Formal Methods' group at Chalmers

@ co-developed KeY tool for deductive JAVA source code verification

o we run Master level course:
‘Software Engineering using Formal Methods'
using Spin and KeY

@ we run 3rd year Bachelor level course:
‘Testing, Debugging, and Verification’

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Background

@ authors:
‘Software Engineering with Formal Methods' group at Chalmers

@ co-developed KeY tool for deductive JAVA source code verification

@ we run Master level course:
‘Software Engineering using Formal Methods'
using Spin and KeY

@ we run 3rd year Bachelor level course:
‘Testing, Debugging, and Verification’

this talk: conception of the latter

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Computing Education at Chalmers

Chalmers University of Technology

Strong engineering tradition, most Swedish engineers from Chalmers
Emphasis on traditional math courses: calculus, algebra, statistics
Computing courses focus on programming

on Bachelor level:
No dedicated courses on theoretical computer science topics

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 3/19

Course Goals

Integration
FMs as integrated aspect of quality code construction

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 4 /19

Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity
We present spectrum of quality ensuring activities:
error detection, error elimination, ensuring error freedom

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 4 /19

Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity

We present spectrum of quality ensuring activities:

error detection, error elimination, ensuring error freedom
Applicability

All methods in action with executable programs

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 4 /19

Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity

We present spectrum of quality ensuring activities:

error detection, error elimination, ensuring error freedom
Applicability

All methods in action with executable programs
Formalisation = Tool Support

Formalisation prerequisite for far-reaching analysis tools

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 4 /19

Course Goals

Integration
FMs as integrated aspect of quality code construction

Diversity

We present spectrum of quality ensuring activities:

error detection, error elimination, ensuring error freedom
Applicability

All methods in action with executable programs

Formalisation = Tool Support
Formalisation prerequisite for far-reaching analysis tools

Tools are essential
Without tools potential of formalisation not fully realised

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

The TDV Course Structure

‘ Specification '
Informal

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 5/19

Informal Specification

@ Exercise informal, but precise specification

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 /19

Informal Specification

@ Exercise informal, but precise specification

o Allegory of specification as contract

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 /19

Informal Specification

@ Exercise informal, but precise specification

o Allegory of specification as contract
o Raise awareness:

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 /19

Informal Specification

@ Exercise informal, but precise specification

o Allegory of specification as contract
o Raise awareness:
e if you write specs or not, you always program towards contracts

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 6 /19

Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract
Raise awareness:

e if you write specs or not, you always program towards contracts

e Example from JAVA programming:

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract
Raise awareness:

e if you write specs or not, you always program towards contracts
e Example from JAVA programming:
o All classes inherit contract from Object

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract
Raise awareness:

e if you write specs or not, you always program towards contracts
e Example from JAVA programming:

o All classes inherit contract from Object
e Object contract requires:
hashcode () consistent with equals()

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract

Raise awareness:
e if you write specs or not, you always program towards contracts

e Example from JAVA programming:

o All classes inherit contract from Object
e Object contract requires:
hashcode () consistent with equals()
o Programmers/students typically break that contract

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Informal Specification

Exercise informal, but precise specification

Allegory of specification as contract
Raise awareness:

e if you write specs or not, you always program towards contracts
e Example from JAVA programming:
o All classes inherit contract from Object
e Object contract requires:
hashcode () consistent with equals()
o Programmers/students typically break that contract
o Consequence: collection classes malfunction

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

The TDV Course Structure

‘ Specification '
Informal

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 7 /19

The TDV Course Structure

Debugging

classic

~—
‘ Specification '
Informal

classic
testing

Testing

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 7 /19

Classic Testing Theory

test inputs and test oracles based on informal specification

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 /19

Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

@ White-/Blackbox testing

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 /19

Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

@ White-/Blackbox testing
o Coverage criteria:

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 /19

Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

@ White-/Blackbox testing
o Coverage criteria:
e control flow graph coverage

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 /19

Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

@ White-/Blackbox testing
o Coverage criteria:

e control flow graph coverage
e logic coverage

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 /19

Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

@ White-/Blackbox testing
o Coverage criteria:

e control flow graph coverage
e logic coverage
e input space partitioning

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 8 /19

Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

@ White-/Blackbox testing
o Coverage criteria:

e control flow graph coverage
e logic coverage
e input space partitioning

@ Writing hand-crafted test cases

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Classic Testing Theory

test inputs and test oracles based on informal specification

Contents

@ White-/Blackbox testing
o Coverage criteria:

e control flow graph coverage
e logic coverage

e input space partitioning

@ Writing hand-crafted test cases

Tool: JUnit

Ahrendt, Bubel, Hihnle (CTH)

Testing, Debugging, and Verification

November 16, 2009

Debugging

Disregarded by most software engineering lectures, in contrast to
development time actually spent on debugging.

A. Zeller Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, Oct. 2005.
Classic Debugging Techniques

o Logging of events
e Controlled execution: Step into/over, breakpoints

@ Inspection: variable values, heap inspection

Tools: logdj, eclipse debugger

Delta Debugging
@ Automatic retrieval of minimal input triggering the bug

Tool: DDinput

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 9 /19

The TDV Course Structure

Debugging

classic

~—
‘ Specification '
Informal

classic
testing

Testing

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 10 / 19

The TDV Course Structure

Debugging

classic

~

\ Specification

2. 3
s £
@)

o &

classic
testing

Testing

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Formal Specification

Students learn
@ Formalisation of real-world problems,
@ Basics of first-order logic and

e Java Modelling Language (JML) as specification language

Tools: jml (syntax and type checker, CoMMON JML TOOLS)

Formal specification prerequisite for automation of

@ Test generation
@ Symbolic debugging

@ Formal verification

Ahrendt, Bubel, Hihnle (CTH)

Testing, Debugging, and Verification November 16, 2009 11/19

The TDV Course Structure

Debugging

classic

~

\ Specification

2. 3
s £
@)

o &

classic
testing

Testing

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 12 /19

The TDV Course Structure

Debugging

classic

~

‘ Specification

2. 3
s £
@)

o &

classic model-based
testing ATCG
Testing

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 12 /19

The TDV Course Structure

Debugging

classic visual

~

‘ Specification I

_ =

Zn 3 5

W ESIORY:

3 8)

A Symbolic =t

Execution =

’I']

=}
classic model-based code-based
testing ATCG ATCG

Testing

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Automatic Test Generation

Blackbox Testing: Model-based testing
Based on formal specification
o Coverage criteria incl. specifications
@ Derivation of test scenarios/cases by disjunction analysis

@ Deriving test cases from JML specifications

Tool: jmlunit (CommON JML ToOOLS)

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 13 /19

Automatic Test Generation

Blackbox Testing: Model-based testing

Based on formal specification
o Coverage criteria incl. specifications
@ Derivation of test scenarios/cases by disjunction analysis

@ Deriving test cases from JML specifications

Tool: jmlunit (CommON JML ToOOLS)

White-box testing
Test cases derived from
@ Formal specification and

@ Source code

Introducing symbolic execution as basic technology.
Tool: KeY-VBT

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 13 /19

Symbolic Debugging

[List.java 2 =8
public static void remove(List start, List
List current = start;
while (current != null) {

if (current.next == toRemove) { |
current.next = toRemove.next;
break; <

} i

@ Execution Tree View %\ Symbolic Execution Debugger

Clear View | Clear Watchpoints | Recompute Watch

Based on symbolic execution

@ Covers all possible execution
paths

@ No initialisation necessary

o Efficient omniscient debugging

November 16, 2|

Symbolic Debugging

Before removal:

¥ Symbolic State View &3, @ Execution Tree View|

Instance Configuation

= <

Array Index Configuration

list_0:List }_@_.l list_LiList m
bexq

<Class>:List

Upcoming Method Invocation:
remove(List start List toRemove)
Input Values:

start = list_0

toRemove := list_1

@ prestate

O poststate

v Constraints

After removal:

9] Y

bolic State Vi &2, ¥ Execution Tree V| Symbolic Executi| = &'
list_LiList

Instance Configuation

= <

list_2:List H
o ?

Array Index Configuration

list_O:List

<Class>:List O prestate

Current Method: © Poststare

remove List stare List toRemove) x

Input Values: Constraints

starti- list.0 "

toRemove : list_L - .
<>

Ahrendt, Bubel, Hihnle (CTH)

Testing, Debugging, and Verification

Based on symbolic execution

@ Covers all possible execution
paths

@ No initialisation necessary

o Efficient omniscient debugging
@ Symbolic heap inspection

November 16, 2009

Symbolic Debugging

Intended configuration:

7% Based on symbolic execution
@ Covers all possible execution
paths

Unintended configuration:

o Efficient omniscient debugging
| lsoust | @ Symbolic heap inspection

o Specification constrains valid
heap configuration

@ No initialisation necessary

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 14 /19

Verification

Most formal approach taught in TDV.

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Most formal approach taught in TDV.

Calculus and tool developed specifically for that course.

Hoare calculus with explicit substitutions

Hoare calculus variant based on symbolic execution
o forward reasoning
@ elimination of most non-deterministic rules
o first-order reasoning as black-box

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 15

Verification

Most formal approach taught in TDV.
Calculus and tool developed specifically for that course.

Hoare calculus with explicit substitutions

Hoare calculus variant based on symbolic execution
o forward reasoning
@ elimination of most non-deterministic rules
o first-order reasoning as black-box

Tool: KeY-Hoare

@ Interactive and automatic verification
system (based on KeY)

e Powerful first-order/arithmetic proving
capabilities

@ Supports partial, total, and
execution time aware correctness

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Ahrendt, Bubel, Hihnle (CTH)

Testing, Debugging, and Verification

November 16, 2009 16 / 19

Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Ahrendt, Bubel, Hihnle (CTH)

Testing, Debugging, and Verification

November 16, 2009 16 / 19

Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Evaluation
Course has been rated high by participating students.
90% of students completed course (high rate for non-compulsory course)

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 16 / 19

Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Evaluation
Course has been rated high by participating students.
90% of students completed course (high rate for non-compulsory course)

Limitations
@ Compromise between available time, topic and depth
e Missing:

o Software certification and code reviews
o Integration into software development process (planned!)

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 16 / 19

Experiences and Discussion

Course given first time: Summer 2007
Course Name: Program verification
Participants: 15 students

Renamed to Testing, Debugging and Verification in 2008
Participants: 80 students

Evaluation
Course has been rated high by participating students.
90% of students completed course (high rate for non-compulsory course)

Limitations

@ Compromise between available time, topic and depth
e Missing:
e Software certification and code reviews
o Integration into software development process (planned!)

Course adapted by U. of Innsbruck, TU of Madrid and U. of Freiburg

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 16 / 19

Research-Driven Course Development

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 /19

Research-Driven Course Development

Can a Bachelor level course be research driven?

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 /19

Research-Driven Course Development

Can a Bachelor level course be research driven?

@ our research objective is precisely increased accessibility of FMs

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 /19

Research-Driven Course Development

Can a Bachelor level course be research driven?

@ our research objective is precisely increased accessibility of FMs

@ students profit from this objective

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 /19

Research-Driven Course Development

Can a Bachelor level course be research driven?

@ our research objective is precisely increased accessibility of FMs
@ students profit from this objective

@ we profit from increased pressure on usability

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009 17 /

in spite of the close connection to our own research:
course can be run in any other context

@ All tools freely available, mostly open source

@ We actively support adaptation of course (units)

o Course parts adapted at:
e Technical University of Madrid
e University of Innsbruck
o University of Freiburg
@ Feedback from adaptions improved our course
(e.g. worst-case execution time in KeY-Hoare
suggested by Joanna Chimiak-Opoka, Innsbruck)

Ahrendt, Bubel, Hihnle (CTH) Testing, Debugging, and Verification November 16, 2009

Overview: Tool-Based Teaching

Teaching Unit Content Formal Tools
Testing Systematic testing, specification, no JUNIT
assertions, black/white box,
path/code coverage
Debugging Bug tracking, execution control, no DDinput,
failure input minimisation, ECLIPSE,
logging, slicing log4j
Formal Design-by-contract, yes jml
Specification formalisation, (type
first-order logic, JML checker)
Automated Model-based TC generation, yes jmlunit,
Test Case Symbolic execution, KEY VSD,
Generation Code-based TC generation KeY VBT
Formal Hoare triple, weakest precondi- yes KeY-Hoare
Verification tion, formal verification, loop in-

variant

All tools freely available software and most open source.

Ahrendt, Bubel, Hihnle (CTH)

Testing, Debugging, and Verification

November 16, 2009

19 / 19

